Which elements of a finite group are non-vanishing?
نویسندگان
چکیده مقاله:
Let $G$ be a finite group. An element $gin G$ is called non-vanishing, if for every irreducible complex character $chi$ of $G$, $chi(g)neq 0$. The bi-Cayley graph ${rm BCay}(G,T)$ of $G$ with respect to a subset $Tsubseteq G$, is an undirected graph with vertex set $Gtimes{1,2}$ and edge set ${{(x,1),(tx,2)}mid xin G, tin T}$. Let ${rm nv}(G)$ be the set of all non-vanishing elements of a finite group $G$. We show that $gin nv(G)$ if and only if the adjacency matrix of ${rm BCay}(G,T)$, where $T={rm Cl}(g)$ is the conjugacy class of $g$, is non-singular. We prove that if the commutator subgroup of $G$ has prime order $p$, then (1) $gin {rm nv}(G)$ if and only if $|Cl(g)|
منابع مشابه
which elements of a finite group are non-vanishing?
let $g$ be a finite group. an element $gin g$ is called non-vanishing, if for every irreducible complex character $chi$ of $g$, $chi(g)neq 0$. the bi-cayley graph $bcay(g,t)$ of $g$ with respect to a subset $tsubseteq g$, is an undirected graph with vertex set $gtimes{1,2}$ and edge set ${{(x,1),(tx,2)}mid xin g, tin t}$. let $nv(g)$ be the set of all non-vanishing element...
متن کاملgroup actions related to non-vanishing elements
we characterize those groups $g$ and vector spaces $v$ such that $v$ is a faithful irreducible $g$-module and such that each $v$ in $v$ is centralized by a $g$-conjugate of a fixed non-identity element of the fitting subgroup $f(g)$ of $g$. we also determine those $v$ and $g$ for which $v$ is a faithful quasi-primitive $g$-module and $f(g)$ has no regular orbit. we do use these to show in ...
متن کاملRings in which elements are the sum of an idempotent and a regular element
Let R be an associative ring with unity. An element a in R is said to be r-clean if a = e+r, where e is an idempotent and r is a regular (von Neumann) element in R. If every element of R is r-clean, then R is called an r-clean ring. In this paper, we prove that the concepts of clean ring and r-clean ring are equivalent for abelian rings. Further we prove that if 0 and 1 are the only idempotents...
متن کاملFinite Groups With a Certain Number of Elements Pairwise Generating a Non-Nilpotent Subgroup
متن کامل
Generating Random Elements of a Finite Group
We present a “practical” algorithm to construct random elements of a finite group. We analyse its theoretical behaviour and prove that asymptotically it produces uniformly distributed tuples of elements. We discuss tests to assess its effectiveness and use these to decide when its results are acceptable for some matrix groups.
متن کاملThe probability that a pair of elements of a finite group are conjugate
Let G be a finite group, and let κ(G) be the probability that elements g, h ∈ G are conjugate, when g and h are chosen independently and uniformly at random. The paper classifies those groups G such that κ(G) ≥ 1/4, and shows that G is abelian whenever κ(G)|G| < 7/4. It is also shown that κ(G)|G| depends only on the isoclinism class of G. Specialising to the symmetric group Sn, the paper shows ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 42 شماره 5
صفحات 1097- 1106
تاریخ انتشار 2016-11-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023